STEEL SHOT SCREEN ANALYSIS (SAE J444)

ASTM mesh No.	Opening	Shot Number										
	mm	5780	2660	S550	S460	5390	5330	5280	5230	5170	5110	870
7	2.83	All pass										
8	2.38		Allipass									
10	2.00	%85 min		All pass	All pass							
12	1.68	%97 min	%85 min		%5 max	All pass						
14	1.41		%97 min	%85 min		%5 max	All pass					
16	1.19			%97 min	%85 min		%5 max	All pass				
18	1.00				%96 min	%85 min		%5 max	All pass			
20	0.84					%96 min	%85 min		%10 max	All pass		
25	0.71						%96 min	%85 min		%10 max		
30	0.60							%96 min	%85 min		All pass	
35	0.50								%97 min		%10 max	
40	0.42									%85 min		All pass
45	0.35									%97 min		%10 max
50	0.30										%80 min	
80	0.18										%90 min	%80 min
120	0.12											%90 min
200	0.07											

^{%:} min. and max. cumulative percentages allowed on corresponding screens.

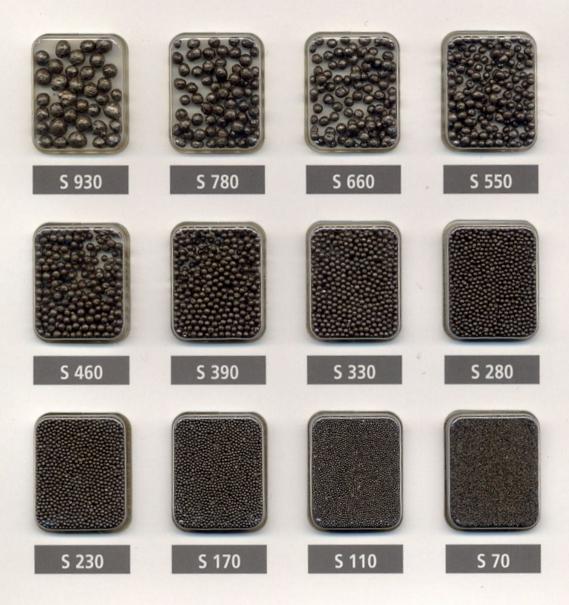
DURABILITY TEST K50

Producer Test Material \$ 390 MTS-Reference LC 390

Lab. No: 65 r	n/sec
Date: 20.01.2	2009

Sample	Density	%Splats	%C	HV1	St. Dev.	K 50	K 100
5 390	4,50		0,780	479	25	1444	
LC 390	4,52		0,099	403	18	2238	

55% better


Wheel Speed: 65 m/sec
Takeout Sleve: 0,40 mm

500 Passes per Test Run, Reference Material of same Grain Size

Sleve (mm)	S 390 LC 390 Operational Mix (%)				
1,12	70	70			
1.00	30	30			

		S 390					
Passes	Retained (%)	Loss (%)	Accum Loss (%)	Retained (%)	Loss (%)	Accum Loss (%)	50% Line
0 500 1000 1500 2000 2500 3000 3500	100 91,1 72,0 47,2	0 8,9 19,1 24,8	0 8,9 28,0 52,8	100 96,0 89,4 78,1 59,7 39,4	0 4,0 6,6 11,3 18,4 20,3	0 4,0 10,6 21,9 40,3 60,6	50 50 50 50 50 50 50

Bainite structure is the ideal microstructure both for surface cleaning and surface preparation applications and also shot peening operations. Bainite microstructure has a greater impact value, hammering effect, rebound effect, maximum coverage on the surface of metal being treated and doesn't contain random and high internal stress. Hence heat treatment is not necessary.

During the operational time the hardness value of bainite shots can reach 45 HRC. This effect can be explained by the cold working process caused by 1.2 - 1.5% manganese in the chemical composition of the shot. As a result the service life of low carbon steel shot is approximately 25% longer than other types of shot. It also causes less wear on the shot blasting machine and the workpiece.

LOW CARBON STEEL SHOT SPECIFICATIONS

CHEMICAL COMPOSITION (SAE-J2175)

Carbon : 0.10. - 0.15 % Manganese : 1.20 - 1.50 % Silicon : 0.10 - 0.25 % Sulphur : 0.035 % max Phosphorus : 0.035 % max

GENERAL APPEARENCE

The Cast Steel Shot shall be as uniform as commercially possible with a minimum of elongated or compound particles, tails hollows, broken pieces, slag or dirt.

MICROSTRUCRURE

Intermediate structure (bainite), a mechanical mixture of Ferrite and Cementite particles, Random feather-like appearance (upper bainite) and accicular (lower bainite) with little or no free carbon particles.

SHOT PERFORMANCE

Life Test: The amount of sample retained on 0.40 mm screen after 1000 cycles of 100 g sample is minimum 80 g Ervin Test: The number of cycles after which sample loses 50 percent of its original weight of 100 g is 2000 - 2500 cycles.

DENSITY

Minimum density is 7.0 g/cc

HARDNESS

The hardness of 90 % of all tested shot particles shall be within the range of 40 - 50 Rockwell C.

PACKAGING

PRODUCTION

Standart form of packaging in 25 kg polyethylene - polypropylene bags onto 1, 1.5 and 2 tons of pallets shrink - wrapped.

GENERAL APPLICATIONS

PRODUCTS

PRODUCTION	PRODUCTS	PURPUSES
Foundry	Iron and Steel Casting ProductsNon-Ferrous Casting Products	DesandingDeburring
Steel Works & Rolling Mill	Blooms and BilletsHot and Cold Rolled ProductsDrawn and Extruded ProductsSteel tubes	• Descaling
Metal Working	Metal Construction & ShipbuildingForging, Stamping, Die-WorkSpring, Gears, Sundiers	DescalingSurface PreparationShot Peening
Miscellaneous	Drums, Wagons, Site EquipmentGraphite, ElectrodesHeavy ConcreteStone Dressing	ReconditioningSurface PreparationShot Peening

DIIDDOCEC